
 [Sharma, 2(2): April-June, 2012] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 2, Issue 2: April-June: 2012, 185-188

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES
&

MANAGEMENT

FSM BASED BIST ARCHITECTURE
Sonal Sharma*1,Vishal Moyal2

*1,2SSITM, Bhilai (C.G.)

Abstract
This paper presents a FSM based Programmable Built-In Self-Test (BIST) approach for testing memory
modules in SOC(system on chip) In general, there are a variety of heterogeneous memory modules in SOC, and
it is not possible to test all of them with a single algorithm. Thus, the proposed BIST is flexible and selectable.
The selection command is used to select a test algorithm from a set of predetermined set of algorithms that are
built in memory BIST. By using various memory test algorithm to test different memory module in SOC is
scheme greatly simplifies the testing process. We also develop a programmable memory BIST generator that
automatically produces RTL model of the proposed BIST architecture for a given set of test algorithms.

Keywords— FSM, BIST, SOC

Introduction
Digital systems are composed of memory
subsystems defects in this memory arrays are
generally due to shorts and opens in memory cells,
address decoder and read/write logic. These defects
can be modeled as single and multicell memory
faults. These defects can be tested using Built-in
Self-Test (BIST).
Built-In Self-Test (BIST) is a promising
methodology for the aforementioned test problems.
In the memory BIST (MBIST) technology, a
dedicated BIST controller is used to implement a
specific memory test algorithm when the chip
under test (CUT) is in test mode [1]-[2]. We do not
use this approach because the requirement for test
algorithm may change during the life cycle of a
given memory device and SOC usually contains
different types of memory blocks, and each type
many need a distinct test algorithm. Many
programmable MBIST [3]-[8] have been
developed, and they can be classified into two
categories: one is based on the finite state machine
(FSM) model [3],[4], and the other is based on the
microcode controller [3]-[8]. In general, the
microcode-based approach is more popular since it
is more flexible because design of such a BIST
increases the complexity, and the area overhead is
usually higher.

* Corresponding Author
E. mail: sonal.sharma30@gmail.com

Here test algorithm is selected by applying some
predefined instructions. We have to create a test
instruction in each step of the test algorithm, and
these external instructions are transferred to the
internal registers one by one. In this way, we can
freely select the applied test algorithm. The
advantage of this approach is the flexibility to
select test algorithms, but both complexity of the
control mechanism and area overhead increase as
well. If the memories are embedded in SOC, the
automatic test equipment (ATE) needs to send
many test commands to execute a test algorithm,
and this process also increases the test time. In this
paper, we propose a new FSM-based BIST
architecture.

Figure 1.1: FSM based BIST Architecture

The proposed is more efficient in terms of circuit
size and test data to be applied, and it requires less
time to configure the BIST. We also develop a
programmable memory BIST generator that
automatically produces RTL model of the proposed
BIST architecture for a given set of test algorithms.

 [Sharma, 2(2): April-June, 2012] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 2, Issue 2: April-June: 2012, 185-188

Proposed Test Pattern Generator
For test a given memory cell is good, it required to
conduct a sequence of write and read operations to
the cell. The actual number of read/write operations
and the order of the operations depend on the target
fault model. Most commonly used memory test
algorithms are March tests, in which there are finite
sequences of March elements. A March element is
a finite sequence of read (r) or writes (w)
operations applied to a cell in memory before
processing the next cell. The address of the next
cell can be in either ascending or descending
address order. The notations are summarized in the
table shown below.

Table 1.1: Notations of operations

When an algorithm reads a cell response will be
either 0 or 1 and they are denoted as r0 and r1
respectively. similarly write 0(1) into a cell is
denoted as w1(w0) .we show commonly used test
algorithm in table with above notation For
example, the MATS+ algorithm first writes a 0 to
each cell in any order ((w0)). In the second March
element, it first verifies if the content in a given cell
is 0, and then writes a 1 into the same cell. The
process is conducted from address 0 up to the last
memory cell ((r0, w1)). In the last March element,
the algorithm verifies if the content of a cell is 1
and then write 0 back to the cell, for all cells
starting from the last one down to address 0 ((r1,
w0)). From Table 1.2, we can see that different test
algorithms may have the same march elements, and
thus we can design a simple and flexible BIST
controller with shared components.

Table 1.2
We optimized a simple small test pattern generator
for use in the memory BIST, utilizing both of the
aforementioned characteristics of the five march
algorithms.

Matsplus algorithm FSM

Figure 1.2: Matsplus algorithm Architecture

r A Read Operation

w A Write Operation

 Up addressing order

 Down addressing order

 Any addressing order

No Algorithm March Elements Code

000 MATS+ {_(w0); _(r0,w1); _(r1,w0)}

001 March X {_(w0); _(r0,w1); _(r1,w0); _(r0)}

010 March C- {_(w0); _(r0,w1); _(r1,w0); _(r0,w1);

_(r1,w0); _(r0)}

011 March A {�(w0);�(r0,w1,w0,w1);�(r1,w0,w1);

100 March B {_(w0); _(r0,w1,r1,w0,r0,w1);

_(r1,w0,w1);

_(r1,w0,w1,w0); _(r0,w1,w0)}

101 March U {_(w0); _(r0,w1,r1,w0); _(r0,w1);

_(r1,w0,r0,w1); _(r1,w0)}

110 March LR

{_(w0); _(r0,w1); _(r1,w0,r0,w1);

_(r1,w0);

_(r0,w1,r1,w0); _(r0)} 111 March SS {_(w0); _(r0,r0,w0,r0,w1);

_(r1,r1,w1,r1,w0);

_(r0,r0,w0,r0,w1); _(r1,r1,w1,r1,w0);

_(r0)}

 [Sharma, 2(2): April-June, 2012] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 2, Issue 2: April-June: 2012, 185-188

CMinus algorithm FSM

Figure 1.3: CMinus algorithm Architecture

March LR

Figure 1.4: March LR Architecture

March-X

Figure 1.5: March-X Architecture

March U

Figure 1.6: March U Architecture

Simulation Result

Figure1.7: MrchSS Algorithm

In the fig FSM of March SS algorithm has been
shown In which the first state “idle” which shows
that this memory BIST is not working .whenever
BIST_En is made Equal to “1” then the first
operation of this algorithm is performed in form of
“Write 0” operation this operation is defined by
“the S0” state when “write complete 0” signal is
made Equal to “1” then FSM then switch to the
“S1” state this state is having 4 elements so four
operation is needed to be performed when is the
first operation of this Algorithm is performed the
counter ,along with this operation is increased by
one to define that first of two identical operation is
performed (the counter is provided as there are two
identical operation consecutively given)so as soon
as fifth operation of this state of this state is
performed then “Write complete 1” signal gets
Equal to “1” results in FSM switches to the third
state hence all operation of this state are performed
in same manner a. finally idle state is achieved
when last operation of this state is performed
In the first experiment, we synthesize the PMBIST
with Xilinx ISE 8.1i. To prove the better

 [Sharma, 2(2): April-June, 2012] ISSN: 2277-5528

Int. J. of Engg. Sci. & Mgmt. (IJESM), Vol. 2, Issue 2: April-June: 2012, 185-188

performance and area utilization, a table 1.3 has
been shown.
Here in simulation we are showing the Faulty FSM
BIST in which test input of 8 bit has been given to
FSM BIST also “001” has been shown by “sel”
signal to the MATS+ in which 1 test vector “0”
needs to be written and “0” all eight location is
written for 64 counts after which algorithm will be
changed to next state.

Table 3: Result

Algorithm Gate
Count of
Previous
method

Gate Count
of Proposed
method

MATS+ 730 216

March X 768 241

March C- 762 281

March B 1,038 1,215

March Lr NI 905

March U NI 885

March SS NI 651

Figure1.8:Simulation of faulty FSM BIST

In this simulation sel line is 000 is given to select
the Mats+ algorithm in which S1 state is showing
the read 0 operation during which output from
RAM is transferred to comparator in test data to
comparator is given as “1” hence stuck at 0 fault is
being shown in this simulation

Figure 1.9: Final Implementation

Conclusion
In this paper we design a FSM based BIST
architecture it provide us with the ability of select
test algorithms on-line The proposed method will
be very useful in SOC testing, since many different
memory core modules (e.g., DRAM, SRAM and
ROM) may be employed in SOC and they require
different test algorithms.

References
1. J. van de Goor and A. Offerman, “Towards a

uniform notation for memoty tests,” in Proc.
European Design and Test Conf., 1996, pp.
420-427.

2. V. G. Mikitjuk, V.n. Yarmolik, and A.J. van
de Goor, “RAM testing algorithms for
detecting multiple linked faults,” in Proc.
European Design and Test Conf., 1996, pp.
435-439.

3. K. Zarrineh, and S. J. Upadhyaya, “On
programmable memory built-in self test
architectures,” in Proc. IEEE Design,
Automation and Test in Europe Conf., pp.
708-713, Mar. 1999.

4. K. Zarrineh, and S. J. Upadhyaya,
“Programmable memory BIST and a new
synthesis framework,” in Proc. Fault-Tolerant
Computing Symp, pp. 352-355, 1999.

5. Balwinder singh , Sukhleen Bindra Narang,
and Arun Khosla on “Address Counter /
Generators for Low Power Memory BIST”
IJCSI International Journal of Computer
Science Issues, Vol. 8, Issue 4, No 1, July
2011.

6. V. D. Agrawal, C. R. Kime, and K. K. Saluja,
“A tutorial on built -test Principles,” IEEE
Design & Test of Computers, Vol. 10, No. 2,
pp. 69-77, March 1993.

7. P. H. Bardell and W. H McAnney, “Built-in
test for RAMs,” IEEE Design & Test of
Computers, Vol. 5, No. 4, pp. 29-36, Aug.
1988.

8. W.L. Wang, K.J. Lee, and J.F. Wang, “An
on-chip march pattern generator for testing
embedded Memory Cores”, IEEE Trans. on
Very Large Scale Integration (VLSI)
Systems, Vol. 9, No. 5, pp. 730-735, Oct.
2001.

